Factored Particles for Scalable Monitoring

نویسندگان

  • Brenda Ng
  • Leonid Peshkin
  • Avi Pfeffer
چکیده

Exact monitoring in dynamic Bayesian net­ works is intractable, so approximate algo­ rithms are necessary. This paper presents a new family of approximate monitoring al­ gorithms that combine the best qualities of the particle filtering and Boyen-Koller meth­ ods. Our algorithms maintain an approxi­ mate representation the belief state in the form of sets of factored particles, that cor­ respond to samples of clusters of state vari­ ables. Empirical results show that our al­ gorithms outperform both ordinary particle filtering and the Boyen-Koller algorithm on large systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing Particle Filtering Complexity for 3D Motion Capture using Dynamic Bayesian Networks

Particle filtering algorithms can be used for the monitoring of dynamic systems with continuous state variables and without any constraints on the form of the probability distributions. The dimensionality of the problem remains a limitation of these approaches due to the growing number of particles required for the exploration of the state space. Computer vision problems such as 3D motion track...

متن کامل

Complete pivoting strategy for the $IUL$ preconditioner obtained from Backward Factored APproximate INVerse process

‎In this paper‎, ‎we use a complete pivoting strategy to compute the IUL preconditioner obtained as the by-product of the Backward Factored APproximate INVerse process‎. ‎This pivoting is based on the complete pivoting strategy of the Backward IJK version of Gaussian Elimination process‎. ‎There is a parameter $alpha$ to control the complete pivoting process‎. ‎We have studied the effect of dif...

متن کامل

Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation

In this work, we propose to apply trust region optimization to deep reinforcement learning using a recently proposed Kronecker-factored approximation to the curvature. We extend the framework of natural policy gradient and propose to optimize both the actor and the critic using Kronecker-factored approximate curvature (K-FAC) with trust region; hence we call our method Actor Critic using Kronec...

متن کامل

ILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms

In this paper‎, ‎an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms‎. ‎We use different drop tolerance parameters to compute the preconditioners‎. ‎To study the effect of such a dropping on the quality of the ILU ...

متن کامل

Parallel Subspace Sampling for Particle Filtering in Dynamic Bayesian Networks

Abstract Monitoring the variables of dynamic systems is a difficult task due to their inherent complexity and uncertainty. Particle Filters (PF) perform that task, yielding probability distribution over the unobserved variables. However, they suffer from the curse of dimensionality problem: the number of particles grows exponentially with the dimensionality of the hidden state space. The proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002